Zum Inhalt springen
- {{#headlines}}
- {{title}} {{/headlines}}
Profil
| Derzeitige Stellung | Professor W-3 und Äquivalente |
|---|---|
| Fachgebiet | Herstellung und Eigenschaften von Funktionsmaterialien,Theorie und Modellierung von Materialien und Oberflächen |
| Keywords | laser - materials interactions, atomistic & mesoscopic modelling, nanomaterials, ultrafast processes in materials, computational materials science |
Aktuelle Kontaktadresse
| Land | USA |
|---|---|
| Ort | Charlottesville |
| Universität/Institution | University of Virginia |
| Institut/Abteilung | Department of Materials Science and Engineering |
Gastgeber*innen während der Förderung
| Prof. Dr. Stephan Barcikowski | Lehrstuhl für Technische Chemie I, Universität Duisburg-Essen, Essen |
|---|---|
| Beginn der ersten Förderung | 01.07.2021 |
Programm(e)
| 2021 | Humboldt-Forschungspreis-Programm für Naturwissenschaftler*innen aus den USA |
|---|
Projektbeschreibung der*des Nominierenden
| Professor Zhigilei is well known internationally for his research in computational materials science and laser-materials interactions. His recent efforts, aimed at revealing the fundamental mechanisms of laser synthesis of nanomaterials in liquids, have provided important insights into laser ablation and fragmentation processes. His computational predictions on the competing nanoparticle formation channels are guiding the advancement of experimental techniques. In Germany, Professor Zhigilei will further explore intriguing research questions related to the complex nonequilibrium phenomenon of laser-materials interactions in liquids. |
Publikationen (Auswahl)
| 2024 | A. Plech, M. Tack, H. Huang, M. Arefev, A. R. Ziefuss, M. Levantino, H. Karadas, C. Chen, L. V. Zhigilei, and S. Reichenberger: Physical regimes and mechanisms of picosecond laser fragmentation of gold nanoparticles in water from X-ray probing and atomistic simulations. In: ACS Nano, 18, 2024, 10527-10541 |
|---|---|
| 2023 | C. Chen and L. V. Zhigilei: Atomistic modeling of pulsed laser ablation in liquid: spatially and time-resolved maps of transient nonequilibrium states and channels of nanoparticle formation. In: Applied Physics A, 129, 2023, 288 |